
PALLADIO Documentation
Release 2.0.3rc1

Matteo Barbieri Samuele Fiorini Federico Tomasi
Annalisa Barla

May 31, 2017

CONTENTS

1 User documentation 3
1.1 Introduction . 3
1.2 The framework . 4
1.3 Quick start tutorial . 9
1.4 API . 13
1.5 Reference . 18

Python Module Index 19

Index 21

i

ii

PALLADIO Documentation, Release 2.0.3rc1

PALLADIO1 is a machine learning framework whose purpose is to provide robust and reproducible results when
dealing with data where the signal to noise ratio is low. It also provides tools to determine whether the dataset being
analyzed contains any signal at all. PALLADIO works by repeating the same experiment many times, each time
resampling the learning and the test set so that the outcome is reliable as it is not determined by a single partition of
the dataset. Besides, using permutation tests, it is possible to provide, to some extent, a measure of how reliable the
results produced by an experiments are. Since all experiments performed are independent, PALLADIO is designed so
that it can exploit a cluster where it is available, in order to greatly reduce the amount of time required.

The final output of PALLADIO consists of several plots and text reports. The main ones are:

• A plot showing the absolute frequencies of features for both regular experiments and permutation tests. Another
plot shows in more detail the selection frequency for the most frequently selected features (i.e., those above the
selection threshold defined in the configuration file).

• A plot showing the distribution of accuracies achieved by regular experiments and permutation tests.

• Two text files listing the features together with their absolute selection frequency, one for regular experiments
and the other for permutation tests.

See Quick start tutorial for instructions on how to setup and launch a PALLADIO session.

1 Barbieri, M., Fiorini, S., Tomasi, F. and Barla, A. “PALLADIO: A Parallel Framework for Robust Variable Selection in High-dimensional
Data.” Proceedings of the 6th Workshop on Python for High-Performance and Scientific Computing (2016): 19-26.

CONTENTS 1

PALLADIO Documentation, Release 2.0.3rc1

2 CONTENTS

CHAPTER

ONE

USER DOCUMENTATION

1.1 Introduction

The issue of reproducibility of experiments is of paramount importance in scientific studies, as it influences the re-
liability of published findings. However when dealing with biological data, especially genomic data such as gene
expression or SNP microarrays, it is not uncommon to have a very limited number of samples available, and these are
usually represented by a huge number of measurements.

A common scenario is the so called case-control study: some quantities (e.g., gene expression levels, presence of
alterations in key loci in the genome) are measured in a number of individuals who may be divided in two groups, or
classes, depending whether they are affected by some kind of disease or not; the goal of the study is to find which
ones, if any, among the possibly many measurements, or features, taken from the individuals (samples), can be used
to define a function (sometimes the term model is used as well) able to predict, to some extent, to which class (in this
case, a diseased individual or a healthy one) an individual belongs.

Machine Learning (ML) techniques work by learning such function using only part of the available samples (the
training set), so that the remaining ones (the test set) can be used to determine how well the function is able to predict
the class of new samples; this is done, roughly speaking, to ensure that the function is able to capture some real
characteristics of the data and not simply fitting the training data, which is trivial. This is referred to in ML literature
as binary classification scenario.

In the aforementioned scenario, having only few samples available means that the learned function may be highly
dependent on how the dataset was split; a common solution to this issue is to perform K-fold cross validation (KCV)
which means splitting the dataset in 𝐾 chunks and performing the experiment 𝐾 times, each time leaving out a
different chunk to be used as test set; this reduces the risk that the results are dependent on a particular split. The 𝐾
parameter usually is chosen between 3 and 10, depending on the dataset. The outcome of this procedure consists of a
signature, that is a list of relevant features, as well as a measure of prediction accuracy, that is the ratio of correctly
classified samples in the test set, averaged over all splits. The final signature is produced by choosing only those
features which have been selected with a frequency higher than a fixed threshold. This reflects the idea that the most
significant features will be selected more often than not, unlike non-significant features.

There are however cases where it is hard to tell whether this procedure actually yielded a meaningful result: for
instance, the fact that the accuracy measure is only slightly higher than chance can indicate two very different things:

• The available features can only describe the phenomenon to a limited extent.

• There is actually no relationship between features and output class, and getting a result better than chance was
just a matter of luck in the subdivision of the dataset.

In order to tackle this issue, PALLADIO repeats the experiment many times (∼ 100), each time using a different
training and test set by randomly sampling from the whole original dataset (without replacement). The experiment is
also repeated the same number of times in a similar setting with a difference: in training sets, the labels are randomly
shuffled, therefore destroying any connection between features and output class.

3

PALLADIO Documentation, Release 2.0.3rc1

The output of this procedure is not a single value, possibly averaged, for the accuracy, but instead two distributions
of values (one for each of the two settings described above) which, in case of datasets where the relationship between
features and output class is at most faint, allows users to distinguish between the two scenarios mentioned above: in
facts, if the available features are somehow connected with the outcome class, even weakly, then the two distributions
will be different enough to be distinguished; if on the other hand features and class are not related in any way, the two
distributions will be indistinguishable, and it will be safe to draw that conclusion.

Since all experiments are independent from one another, PALLADIO has been designed to take advantage of parallel
architectures such as clusters or multicore processors, if they are available.

1.2 The framework

Runs in PALLADIO are called sessions; a session consists of the execution of all experiments followed by the analysis
of the results.

For details on how to perform the experiments and analyze the results, please refer to the Quick start tutorial.

1.2.1 Dataset format

A dataset consists of two things:

• An input matrix 𝑋 ∈ R𝑛×𝑝 representing 𝑛 samples each one described by 𝑝 features; in the case of gene
expression microarrays for instance each feature represents

• An output vector y of length 𝑛 whose elements are either a continuous value or a discrete label, describing some
property of the samples. These may represent for example the levels of a given substance in the blood of an
individual (continuous variable) or the class to which he or she belongs (for instance, someone affected by a
given disease or a healthy control).

For the time being, we will only consider a specific instance of the latter case, where the number of classes is two: this
is commonly referred to as binary classification scenario.

As previously explained, the core idea behind PALLADIO is to return, together with a list of significant features, not
just a single value as an estimate for the prediction accuracy which can be achieved, but a distribution, so that it can
be compared with the distribution obtained from experiments when the function is learned from data where the labels
have been randomly shuffled (see Introduction).

1.2.2 Pipeline

Once the main script has been launched, the configuration file is read in order to retrieve all required information to
run all the experiments of a PALLADIO session. These include:

• The location of data and labels files.

• Experiment design parameters, such as the total number of experiments and the ratio of samples to be used for
testing in each experiment.

• Parameters specific to the chosen machine learning algorithm: for instance, for the Elastic Net algorithm, the
values for the alpha and l1_ratio parameters.

A session folder is created within the folder containing the configuration file, in order to keep everything as contained
as possible; data and labels file, together with the configuration file itself, are copied inside this folder. Then, experi-
ments are distributed among the machines of the cluster; each machine will be assigned roughly the same number of
jobs in order to balance the load.

4 Chapter 1. User documentation

PALLADIO Documentation, Release 2.0.3rc1

Experiments

Each experiment is divided in several stages, as shown in Fig. 1.1:

Fig. 1.1: The stages each experiment goes through.

Dataset split and preprocessing

In the very first stage, the dataset is split in training and test set, in a ratio determined by the corresponding parameter
in the experiment configuration file; also, during this stage, any kind of data preprocessing (such as centering or
normalization) is performed.

Model selection

Assuming that the chosen classifier requires some parameter to be specified (for instance the ℓ1 and squared ℓ2 penali-
ties weights when using the ℓ1ℓ2 regularized least square algorithm), the training set is split in 𝐾 chunks (the number
𝐾 is also specified in the experiment configuration file) and K-fold cross validation is performed in order to choose
the best parameters, that is those which lead to the model with the lowest cross validation error.

Model assessment

Finally, the algorithm is trained using the parameters chosen in the previous step on the whole training set; the
function obtained is then used to predict the labels of samples belonging to the test set, which have not been used so
far in any way, so that the results of whole procedure are unbiased.

At the end of each experiment, results are stored in a .pkl file inside a subfolder whose name will be of the form
regular_p_P_i_I for regular experiments and permutation_p_P_i_I for experiments where the training
labels have been randomly shuffled, where P and I the process number and within that process a counter which is
incremented by one after each experiment.

1.2. The framework 5

PALLADIO Documentation, Release 2.0.3rc1

Analysis

The analysis script simply reads the partial results in all experiment folders, consisting of

• A list of features

• The predicted labels for the test set

With these it computes the accuracy achieved and then uses these elaborated results to produce a number of plots:

Fig. 1.2 shows the absolute feature selection frequency in both regular experiments and permutation tests; each tick
on the horizontal axis represents a different feature, whose position on the vertical axis is the number of times it was
selected in an experiment. Features are sorted based on the selection frequency relative to regular experiments; green
dots are frequencies for regular experiments, red ones for permutation tests.

Features
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
fr

eq
ue

nc
ie

s

Feature frequencies

Regular batch
Permutation batch
Threshold

Fig. 1.2: A manhattan plot showing the distribution of frequencies for both regular experiments and permutation tests.

Fig. 1.3 shows a detail of the frequeny of the top 2 × 𝑝rel selected features, where 𝑝rel is the number of features
identified as relevant by the framework, i.e. those which have been selected enough times according to the selection
threshold defined in the configuration file. Seeing the selection frequency of relevant features with respect to the
selection frequency of those which have been rejected may help better interpret the obtained results.

Finally, Fig. 1.4 shows the distribution of prediction accuracies (corrected for class imbalance) for regular experiments
and permutation tests; this plot answer the questions:

• Is there any signal in the data being analyzed?

• If yes, how much the model can describe it?

In the example figure, the two distributions are clearly different, and the green one (showing the accuracies of regular
experiments) has a mean which is significantly higher than chance (50 %). A p-value obtained with the Two-sample
Kolmogorov–Smirnov test is also present in this plot, indicating whether there is a significant difference between the
two distributions.

6 Chapter 1. User documentation

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#Two-sample_Kolmogorov.E2.80.93Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#Two-sample_Kolmogorov.E2.80.93Smirnov_test

PALLADIO Documentation, Release 2.0.3rc1

Y
00

78
7_

s_
at

M
19

50
7_

at

Z
19

55
4_

s_
at

M
17

73
3_

at

M
27

89
1_

at

M
11

14
7_

at

M
25

07
9_

s_
at

M
69

04
3_

at

Y
00

43
3_

at

M
91

03
6_

rn
a1

_a
t

L0
67

97
_s

_a
t

M
96

32
6_

rn
a1

_a
t

L2
06

88
_a

t

U
01

31
7_

cd
s4

_a
t

M
14

48
3_

rn
a1

_s
_a

t

L2
09

41
_a

t

D
21

26
1_

at

A
F

F
X

-H
U

M
R

G
E

/M
10

09
8_

3_
at

Z
84

72
1_

cd
s2

_a
t

H
G

14
28

-H
T

14
28

_s
_a

t

X
17

04
2_

at

M
28

13
0_

rn
a1

_s
_a

t

U
06

15
5_

s_
at

X
78

99
2_

at

Feature names

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
fr

eq
ue

nc
y

Manhattan plot - top features detail
Threshold

Fig. 1.3: A detail of the manhattan plot.

1.2. The framework 7

PALLADIO Documentation, Release 2.0.3rc1

0 20 40 60 80 100

balanced_accuracy

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
bs

ol
ut

e
F

re
qu

en
cy

Distribution of balanced_accuracy

Permutation batch
Mean = 0.5, SD = 0.2

Regular batch
Mean = 0.9, SD = 0.1

Two sample Kolmogorov-Smirnov test p-value: 2.132e-14

Fig. 1.4: The distributions of accuracies for both regular experiments and permutation tests.

8 Chapter 1. User documentation

PALLADIO Documentation, Release 2.0.3rc1

1.2.3 Results interpretation

Once the analysis has been performed, it is possible to draw conclusions from the results of the experiment.

Ideally, in a dataset where there is a significant correlation between input and output, the two distributions of accuracy
values will be visibly different, such as those shown in Fig. 1.4. As a consequenence, the p-value for the Two-sample
Kolmogorov–Smirnov test will be very low (see below for more details on the choice of the significance level 𝛼).

The purpose of testing if the two distributions are different is to determine if the feature signature is reliable or not:
in facts, if one obtains a poor result in terms of prediction accuracy, there is no point in looking at the list of selected
variables, as those would refer to models which were not able to fit the available data.

Significance level

When using statistical tests such as the T-test to compare two distributions the p-value is compared with a given
threshold or significance level 𝛼, which is usually set to 0.05 or 0.01.

However we noticed that, on experiments performed on datasets with no correlation between input and output with the
purpose of determining the behaviour of the framework in these cases, the two distributions of accuracy values, albeit
being almost identical, yielded a p-value in the order of 10−5 − 10−4. Notice that, being experiments performed on
synthetic datasets, we knew in advance that there was no correlation whatsoever and therefore the two distributions
had to be indistinguishable.

The suggested significance level when performing 100 experiments per batch (a total of 200) is 10−10.

1.3 Quick start tutorial

1.3.1 Installation using pip

PALLADIO may be installed using standard Python tools (with administrative or sudo permissions on GNU-Linux
platforms):

$ pip install palladio

or

$ easy_install palladio

We strongly suggest to use Anaconda and create an environment for your experiments.

1.3.2 Installation from sources

If you like to manually install PALLADIO, download the .zip or .tar.gz archive from http://slipguru.github.io/palladio/.
Then extract it and move into the root directory:

$ unzip slipguru-palladio-|release|.zip
$ cd palladio-|release|/

or:

$ tar xvf slipguru-palladio-|release|.tar.gz
$ cd palladio-|release|/

1.3. Quick start tutorial 9

https://www.continuum.io/downloads
http://slipguru.github.io/palladio/

PALLADIO Documentation, Release 2.0.3rc1

Otherwise you can clone our GitHub repository:

$ git clone https://github.com/slipguru/palladio.git

From here, you can follow the standard Python installation step:

$ python setup.py install

After PALLADIO installation, you should have access to two scripts, named with a common pd_ prefix:

$ pd_<TAB>
pd_analysis.py pd_run.py

This tutorial assumes that you downloaded and extracted PALLADIO source package which contains a palladio/
config_templates directory with some data files (.npy or .csv) which will be used to show PALLADIO
functionalities.

PALLADIO needs only 3 ingredients:

• n_samples x n_variables input matrix

• n_samples x 1 labels vector

• a configuration file

1.3.3 Cluster setup

Since all experiments performed during a run are independent from one another, PALLADIO has been designed
specifically to work in a cluster environment. It is fairly easy to prepare the cluster for the experiments: assuming a
standard configuration for the nodes (a shared home folder and a python installation which includes standard libraries
for scientific computation, namely numpy, scipy and sklearn, as well as of course the mpi4py library for the
MPI infrastructure), it is sufficient to transfer on the cluster a folder containing the dataset (data matrix and labels) and
the configuration file, and install PALLADIO itself following the instructions above.

1.3.4 Configuration File

A configuration file in PALLADIO is a standard Python script. It is imported as a module, then all the code is
executed. In this file the user defines all the parameters required to run a session, that is to perform all the experiments
required to produce the final plots and reports.

In folder palladio/config_templates you will find an example of a typical configuration file. Every config-
uration file has several sections which control different aspects of the procedure.

The code below contains all the information required to load the dataset which will be used in the experiments.

data_path = 'data/gedm.csv'
target_path = 'data/labels.csv'

pandas.read_csv options
data_loading_options = {

'delimiter': ',',
'header': 0,
'index_col': 0

}
target_loading_options = data_loading_options

10 Chapter 1. User documentation

https://github.com/slipguru/palladio

PALLADIO Documentation, Release 2.0.3rc1

dataset = datasets.load_csv(
os.path.join(os.path.dirname(__file__),data_path),
os.path.join(os.path.dirname(__file__),target_path),
data_loading_options=data_loading_options,
target_loading_options=target_loading_options,
samples_on='col')

data, labels = dataset.data, dataset.target
feature_names = dataset.feature_names

The last two lines store the input data matrix data and the labels vector labels in two variables which will be
accessible during the session. The names of the features are also saved at this point. Notice how it is possible to load
the dataset in any desired way, as long as data ends up being a 𝑛 × 𝑑 matrix and labels a vector of 𝑛 elements
(both np.array-like).

Next, we have the section containing settings relative to the session itself:

session_folder = 'palladio_test_session'

The learning task, if None palladio tries to guess it
[see sklearn.utils.multiclass.type_of_target]
learning_task = None

The number of repetitions of 'regular' experiments
n_splits_regular = 50

The number of repetitions of 'permutation' experiments
n_splits_permutation = 50

The most important settings are the last two, namely n_splits_regular and n_splits_permutation,
which control how many repetitions of regular and permutations experiments are performed. Normally you’ll want to
perform the same number of experiments for the two batches, but there are cases in which for instance you may want
to perform only one of the two batches: in that case you will want to set one of the two variables to be 0.

Finally, the section of the configuration file where the actual variable selection and learing algorithms (and their
parameters) are chosen:

model = RFE(LinearSVC(loss='hinge'), step=0.3)

Set the estimator to be a GridSearchCV
param_grid = {

'n_features_to_select': [10, 20, 50],
'estimator__C': np.logspace(-4, 0, 5),

}

estimator = GridSearchCV(
model,
param_grid=param_grid,
cv=3,
scoring='accuracy',
n_jobs=1)

Set options for ModelAssessment
ma_options = {

'test_size': 0.25,
'scoring': 'accuracy',
'n_jobs': -1,

1.3. Quick start tutorial 11

PALLADIO Documentation, Release 2.0.3rc1

'n_splits': n_splits_regular
}

This is maybe the less intuitive part of the file. Because of the way PALLADIO is designed, for all repetitions of the
experiment a new learning and test set are generated by resampling without replacement from the whole dataset, then
an estimator is used to fit the learning set. This is where that estimator (and its parameter) is defined.

Think about the estimator variable as the sklearn-compatible object (an estimator) which you would use to fit
a training set, with the intent of validating it on a separate test set.

In this example we use a RFE algorithm (see http://scikit-learn.org/stable/modules/generated/sklearn.feature_
selection.RFE.html) for variable selection, which internally uses a Linear SVM for classification. Then we use a
GridSearchCV (http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html) ob-
ject to wrap the RFE object, because we want to optimize the parameters for the RFE object itself, which are defined
just above the declaration of the estimator variable.

The dictionary ma_options define some more configuration options for the ModelAssessment object, which is
the one responsible for the outer iterations (the ones where the dataset is resampled); the test_size key for instance
determins the portion of data left aside for testing.

The only constraint for the estimator object is that it has to implement the standard methods of an sklearn
estimator object, that is methods fit and predict. Using any classification algorithm provided by the scikit-learn
library automatically satisfies this requirement.

1.3.5 Running the experiments

Parallel jobs are created by invoking the mpirun command; the following syntax assumes that the OpenMPI im-
plementation of MPI has been chosen for the cluster, if this is not the case, please refer to the documentation of the
implementation available on your cluster for the command line options corresponding to those specified here:

$ mpirun -np N_JOBS --hostfile HOSTFILE pd_run.py path/to/config.py

Here N_JOBS obviously determines how many parallel jobs will be spawned and distributed among all available
nodes, while HOSTFILE is a file listing the addresses or names of the available nodes.

Take into account that if optimized linear algebra libraries are present on the nodes (as it is safe to assume for most
clusters) you should tune the number of jobs so that cores are optimally exploited: since those libraries already
parallelize operations, it is useless to assign too many slots for each node.

Running experiments on a single machine

It is possible to perform experiments using PALLADIO also on a single machine, without a cluster infrastructure.
The command is similar to the previous one, it is sufficient to omit the first part, relative to the MPI infrastructure:

$ pd_run.py path/to/config.py

Warning: Due to the great number of experiments which are performed, it might take a very long time for the
whole procedure to complete; this option is therefore deprecated unless the dataset is very small (no more than 100
samples and no more than 100 features).

12 Chapter 1. User documentation

http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
http://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
http://scikit-learn.org/stable/
https://www.open-mpi.org/

PALLADIO Documentation, Release 2.0.3rc1

1.3.6 Results analysis

The pd_analysis.py script reads the results from all experiments and produces several plots and text files. The
syntax is the following:

$ pd_analysis.py path/to/results_dir

See Analysis for further details on the output of the analysis.

1.4 API

1.4.1 Pipeline utilities

Nested Cross-Validation for scikit-learn using MPI.

This package provides nested cross-validation similar to scikit-learn’s GridSearchCV but uses the Message Passing
Interface (MPI) for parallel computing.

class palladio.model_assessment.ModelAssessment(estimator, cv=None, scoring=None,
fit_params=None, multi_output=False,
shuffle_y=False, n_jobs=1, n_splits=10,
test_size=0.1, train_size=None, ran-
dom_state=None, groups=None, experi-
ments_folder=None, verbose=False)

Cross-validation with nested parameter search for each training fold.

The data is first split into cv train and test sets. For each training set a grid search over the specified set of
parameters is performed (inner cross-validation). The set of parameters that achieved the highest average score
across all inner folds is used to re-fit a model on the entire training set of the outer cross-validation loop. Finally,
results on the test set of the outer loop are reported.

Parameters estimator : object type that implements the “fit” and “predict” methods

A object of that type is instantiated for each grid point.

cv : integer or cross-validation generator, optional, default: 3

If an integer is passed, it is the number of folds. Specific cross-validation objects can be
passed, see sklearn.cross_validation module for the list of possible objects

scoring : string, callable or None, optional, default: None

A string (see model evaluation documentation) or a scorer callable object / function with
signature scorer(estimator, X, y). See sklearn.metrics.get_scorer for details.

fit_params : dict, optional, default: None

Parameters to pass to the fit method.

multi_output : boolean, default: False

Allow multi-output y, as for multivariate regression.

shuffle_y : bool, optional, default=False

When True, the object is used to perform permutation test.

n_jobs : int, optional, default: 1

1.4. API 13

PALLADIO Documentation, Release 2.0.3rc1

The number of jobs to use for the computation. This works by computing each of
the Monte Carlo runs in parallel. If -1 all CPUs are used. If 1 is given, no parallel
computing code is used at all, which is useful for debugging. Ignored when using
MPI.

n_splits: int, optional, default: 10 The number of cross-validation splits
(folds/iterations).

test_size : float (default 0.1), int, or None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to
include in the test split. If int, represents the absolute number of test samples. If None,
the value is automatically set to the complement of the train size.

train_size : float, int, or None (default is None)

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset
to include in the train split. If int, represents the absolute number of train samples.
If None, the value is automatically set to the complement of the test size.

random_state [int or RandomState, optional, default: None] Pseudo-random number
generator state used for random sampling.

groups [array-like, with shape (n_samples,), optional, default: None] Group labels for
the samples used while splitting the dataset into train/test set.

experiments_folder : string, optional, default: None

The path to the folder used to save the results.

verbose : bool, optional, default: False

Print debug messages.

14 Chapter 1. User documentation

PALLADIO Documentation, Release 2.0.3rc1

Attributes

scorer_
function Scorer function used on the held

out data to choose the best param-
eters for the model.

cv_results_
dictionary Result of the fit. The dictionary

is pandas.DataFrame-able. Each
row is the results of an external
split. Columns are: ‘split_i’,
‘learn_score’, ‘test_score’,
‘cv_results_‘, ‘ytr_pred’,
‘yts_pred’, ‘test_index’,
‘train_index’, ‘estimator’
Example: >>>
pd.DataFrame(cv_results_)
split_i | learn_score | test_score |
cv_results_ | ...

0 | 0.987 | 0.876 | {<in-
ternal splits>} | ... 1
| 0.846 | 0.739 | {<in-
ternal splits>} | ... 2
| 0.956 | 0.630 | {<in-
ternal splits>} | ... 3 |
0.964 | 0.835 | {<inter-
nal splits>} | ...

fit(X, y)
Fit the model to the training data.

1.4.2 Extra tools

Utilities functions and classes.

palladio.utils.save_signature(filename, selected, threshold=0.75)
Save signature summary.

palladio.utils.retrieve_features(best_estimator)
Retrieve selected features from any estimator.

In case it has the ‘get_support’ method, use it. Else, if it has a ‘coef_‘ attribute, assume it’s a linear model and
the features correspond to the indices of the coefficients != 0

palladio.utils.get_selected_list(grid_search, vs_analysis=True)
Retrieve the list of selected features.

Retrieves the list of selected features automatically identifying the type of object

Returns index : nunmpy.array

The indices of the selected features

palladio.utils.build_cv_results(dictionary, **results)
Function to build final cv_results_ dictionary with partial results.

palladio.utils.signatures(splits_results, frequency_threshold=0.0)
Return (almost) nested signatures for each correlation value.

1.4. API 15

PALLADIO Documentation, Release 2.0.3rc1

The function returns 3 lists where each item refers to a signature (for increasing value of linear correlation).
Each signature is orderer from the most to the least selected variable across KCV splits results.

Parameters splits_results : iterable

List of results from L1L2Py module, one for each external split.

frequency_threshold : float

Only the variables selected more (or equal) than this threshold are included into the
signature.

Returns sign_totals : list of numpy.ndarray.

Counts the number of times each variable in the signature is selected.

sign_freqs : list of numpy.ndarray.

Frequencies calculated from sign_totals.

sign_idxs : list of numpy.ndarray.

Indexes of the signatures variables .

Examples

>>> from palladio.utils import signatures
>>> splits_results = [{'selected_list':[[True, False], [True, True]]},
... {'selected_list':[[True, False], [False, True]]}]
>>> sign_totals, sign_freqs, sign_idxs = signatures(splits_results)
>>> print sign_totals
[array([2., 0.]), array([2., 1.])]
>>> print sign_freqs
[array([1., 0.]), array([1. , 0.5])]
>>> print sign_idxs
[array([0, 1]), array([1, 0])]

palladio.utils.selection_summary(splits_results)
Count how many times each variables was selected.

Parameters splits_results : iterable

List of results from L1L2Py module, one for each external split.

Returns summary : numpy.ndarray

Selection summary. # mu_values X # variables matrix.

palladio.utils.confusion_matrix(labels, predictions)
Calculate a confusion matrix.

From given real and predicted labels, the function calculated a confusion matrix as a double nested dictionary.
The external one contains two keys, 'T' and 'F'. Both internal dictionaries contain a key for each class label.
Then the ['T']['C1'] entry counts the number of correctly predicted 'C1' labels, while ['F']['C2']
the incorrectly predicted 'C2' labels.

Note that each external dictionary correspond to a confusion matrix diagonal and the function works only on
two-class labels.

Parameters labels : iterable

Real labels.

16 Chapter 1. User documentation

PALLADIO Documentation, Release 2.0.3rc1

predictions : iterable

Predicted labels.

Returns cm : dict

Dictionary containing the confusion matrix values.

palladio.utils.classification_measures(confusion_matrix, positive_label=None)
Calculate some classification measures.

Measures are calculated from a given confusion matrix (see confusion_matrix() for a detailed description
of the required structure).

The positive_label arguments allows to specify what label has to be considered the positive class. This is
needed to calculate some measures like F-measure and set some aliases (e.g. precision and recall are respectively
the ‘predictive value’ and the ‘true rate’ for the positive class).

If positive_label is None, the resulting dictionary will not contain all the measures. Assuming to have to
classes ‘C1’ and ‘C2’, and to indicate ‘C1’ as the positive (P) class, the function returns a dictionary with the
following structure:

{
'C1': {'predictive_value': --, # TP / (TP + FP)

'true_rate': --}, # TP / (TP + FN)
'C2': {'predictive_value': --, # TN / (TN + FN)

'true_rate': --}, # TN / (TN + FP)
'accuracy': --, # (TP + TN) / (TP + FP + FN + TN)
'balanced_accuracy': --, # 0.5 * ((TP / (TP + FN)) +

(TN / (TN + FP)))
'MCC': --, # ((TP * TN) - (FP * FN)) /

sqrt((TP + FP) * (TP + FN) *
(TN + FP) * (TN + FN))

Following, only with positive_labels != None
'sensitivity': --, # P true rate: TP / (TP + FN)
'specificity': --, # N true rate: TN / (TN + FP)
'precision': --, # P predictive value: TP / (TP + FP)
'recall': --, # P true rate: TP / (TP + FN)
'F_measure': -- # 2. * ((Precision * Recall) /

(Precision + Recall))
}

Parameters confusion_matrix : dict

Confusion matrix (as the one returned by confusion_matrix()).

positive_label : str

Positive class label.

Returns summary : dict

Dictionary containing calculated measures.

palladio.utils.set_module_defaults(module, dictionary)
Set default variables of a module, given a dictionary.

Used after the loading of the configuration file to set some defaults.

palladio.utils.sec_to_timestring(seconds)
Transform seconds into a formatted time string.

1.4. API 17

PALLADIO Documentation, Release 2.0.3rc1

Parameters seconds : int

Seconds to be transformed.

Returns :

———– :

time : string

A well formatted time string.

palladio.utils.safe_run(function)
Decorator that tries to run a function and prints an error when fails.

1.4.3 Plotting functions

palladio.plotting.score_plot(param_grid, results, indep_var=None, pivoting_var=None,
base_folder=None, logspace=None, plot_errors=False,
is_regression=False)

Plot error 2d plot.

Parameters param_grid : dict

Dictionary of grid parameters for GridSearch.

results : dict

Instance of an equivalent of cv_results_, as given by ModelAssessment.

indep_var : array-like, optional, default None

List of independent variables on which plots are based. If more that 2, a plot for each
combination is made. If None, the 2 longest parameters in param_grid are selected.

pivoting_var : array-like, optional, default None

List of pivoting variables. For each of them, a plot is made. If unspecified, get the
unspecified independent variable with the best model values.

base_folder : str or None, optional, default None

Folder where to save the plots.

logspace : array-like or None, optional, default None

List to specify which variable to visualise in logspace.

plot_errors : bool, optional, default False

If True, plot errors instead of scores.

is_regression : bool, optional, default False

If True and plot_errors is True, do errors = -scores instead of 1 - scores.

1.5 Reference

18 Chapter 1. User documentation

PYTHON MODULE INDEX

p
palladio.model_assessment, 13
palladio.utils, 15

19

PALLADIO Documentation, Release 2.0.3rc1

20 Python Module Index

INDEX

B
build_cv_results() (in module palladio.utils), 15

C
classification_measures() (in module palladio.utils), 17
confusion_matrix() (in module palladio.utils), 16

F
fit() (palladio.model_assessment.ModelAssessment

method), 15

G
get_selected_list() (in module palladio.utils), 15

M
ModelAssessment (class in palladio.model_assessment),

13

P
palladio.model_assessment (module), 13
palladio.utils (module), 15

R
retrieve_features() (in module palladio.utils), 15

S
safe_run() (in module palladio.utils), 18
save_signature() (in module palladio.utils), 15
score_plot() (in module palladio.plotting), 18
sec_to_timestring() (in module palladio.utils), 17
selection_summary() (in module palladio.utils), 16
set_module_defaults() (in module palladio.utils), 17
signatures() (in module palladio.utils), 15

21

	User documentation
	Introduction
	The framework
	Quick start tutorial
	API
	Reference

	Python Module Index
	Index

